
International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

A Genetic Algorithm Based Pattern Matcher
Sagnik Banerjee, Tamal Chakrabarti, Devadatta Sinha

Abstract— Pattern matching is the method of searching a pattern in a text. There are several existing algorithms which successfully locate
the presence of a pattern in a text. In particular, Bioinfomaticians often search for a Deoxy-Ribo Nucleic Acid (DNA) pattern in a very long
DNA sequence. These algorithms search the entire text in order to locate the pattern. Genetic algorithms, on the other hand, deal with
search procedures that are based on natural selection. Nature selects those individuals that are, in comparison, healthier than others in a
certain generation. Even though this method of natural selection relies on probability, the final result of the selection has generally led to
better and healthier individuals. In this paper we have presented a scheme, which searches only certain portions of the text, determined by
the genetic algorithm, where the probability of finding the pattern is the maximum.

Index Terms— Bio-informatics, DNA, Genetic algorithm, Non-deterministic process, Pattern matching.

—————————— ——————————

1 INTRODUCTION

attern matching is a mechanism to locate the presence of a
sequence of characters (called the pattern) in a much
longer sequence of characters (called the text) [3]. In order

to locate the pattern in the text, most existing algorithms, such
as the Knuth-Morris-Pratt (KMP) [5] and Boyer Moore (BM)
[2] algorithms scan the entire text for the presence of the
pattern. This causes the run time to increase for very large
strings such as the DNA.
DNA is a chemical compound containing four types of
nitrogen bases Adenine, Guanine, Cytosine and Thymine.
DNA is made up of a certain order of these bases. In a
computer we represent each nitrogen base with a single
character: A for Adenine, G for Guanine, C for Cytosine and T
for Thymine [11]. A DNA sequence is a representation of the
genetic code contained within an organism. DNA pattern
matching [10] is an identification of a pattern of nucleotides in
one or more sections of a given genetic code [7]. Biologists use
the pattern matching algorithms to discover evolutionary
divergence [6], the origins of disease [9], and ways to apply
genetic codes from one organism into another [8].We treat
every DNA sequence as a file which consists of a sequence of
characters belonging to the set S, where S= {A, G, T, C}.
Typically these files can grow to be extremely large, for
example size of the file which stores the genome of Polychaos
dubium (Amoeboid) is about 670GB. The algorithms which
search the entire file [1] for a pattern take longer and longer
time, as the file sizes continue to grow. To avoid searching the
entire text, our algorithm attempts to break up the text into
smaller independent units and then search for the pattern in
each of those units. The points at which the text would be
broken are decided based on a genetic algorithm.

————————————————

 Sagnik Banerjee is currently pursuing master’s degree program in Computer
Science and Engineering from Jadavpur University, Kolkata, India, PH-
919038749129. E-mail: sagnikbanerjee15@gmail.com

 Tamal Chakrabarti is currently working as an Assistant Professor in the
department of Computer Science & Engineering at Institute of Engineering &
Management, Kolkata, India, PH-919836237632. E-mail: tamalc@gmail.com

 Devadatta Sinha is currently working as a Professor in the department of
Computer Science & Engineering at Calcutta University, Kolkata, India, PH-
919830269278. E-mail: devadatta.sinha@gmail.com

Genetic algorithm (GA) basically uses the method of
―Natural Selection‖ to select the best chromosomes from a
generation [4]. Then GA uses genetic operators to like
crossover and mutation to create better individuals. Computer
algorithms have been designed to simulate these operators.
All these algorithms are probabilistic in nature. In our
algorithm we have used genetic operators to break up the text
into independent units. Then on each unit we have the applied
existent pattern matching algorithms Knuth-Morris-Pratt
(KMP) and Boyer Moore (BM).

This algorithm basically searches for the presence of a given
pattern only in that portion of a text where there is a high
chance for it to exist. Since, effectively, the text size is reduced
the algorithm can extensively be applied to the DNA pattern
matching problem for achieving considerable improvement of
the search-time.

2 RELATED WORK

The Knuth-Morris-Pratt (KMP) and the Boyer-Moore (BM)
algorithms are the most widely used in pattern matchers. We
will denote ‗n‘ as the size of the text and ‗m‘ as the size of the
pattern (n >> m) in subsequent discussions. Table 1 depicts the
same.

TABLE 1
IMPORTANT NOTATIONS-1

Abbreviation Description

n Size of text

m Size of pattern

The KMP algorithm makes use of the observation that

when a mismatch occurs during pattern matching, the pattern
itself contains enough information to determine where the
next match could begin. The algorithm skips re-examination of
previously matched characters.

KMP does preprocessing on the pattern. Using the pattern
it creates a table which is also called a failure function. It
basically indicates the amount by which the pattern should be
shifted when a mismatch occurs. The goal of computing the
table is to ensure that every character in the text is matched

P

mailto:tamalc@gmail.com
mailto:devadatta.sinha@gmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 11, November-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

exactly once. By preprocessing we examine all possible
substrings of the pattern and prepare a list of all possible shifts
that bypass a maximum of useless characters while not
sacrificing any potential matches in doing so. The failure
function computes the length of the longest proper prefix and
the common longest proper suffix for all possible substrings of
the pattern.

The algorithm searches for a pattern in a text from left to
right. At any position if there is a mismatch between the
characters of the text and of the pattern, then the pattern is
shifted by a value given by the failure function.

The complexity of KMP is O(m+n). The preprocessing
function runs in O(m) time which basically scans the pattern.
Then the algorithm that actually matches the pattern with the
text runs in O(n) time. One of the biggest advantages of KMP
is that during matching the pattern with the text, it never
processes a character in the text more than once.

The BM algorithm also searches for a pattern in a text from
left to right. But unlike KMP there are two heuristics instead of
one. The BM algorithm initially places the pattern with the text
at the starting point of the text. Then matching is done from
right to left. In case of a character match the previous character
in the alignment is attempted to be matched. If by doing so the
front of the pattern is reached then a match is declared. But in
the event of a mismatch the pattern is shifted to the right
according to the maximum value permitted by a couple of
rules, called the bad-character and good-suffix rules. These
shift rules are generated during pattern preprocessing.

If the pattern does not appear in the text then the worst
case complexity is O(m+n). When the pattern does occur in the
text then the worst case complexity is O(mn), the best case
complexity is O(n/m).

From the time complexity it is evident that BM will
perform better when the size of the pattern is large in the best
case, which is a major improvement over KMP. But in the
worst case the complexity increases to be quadratic. The main
disadvantage of BM is its dependence on the pattern, and that
it does not work well with a small alphabet size.

3 GENETIC ALGORITHM

Genetic algorithm is an adaptive search heuristic in the field of
Artificial intelligence that imitates the process of natural
evolution. In the cells of every living organism there exists a
set of chromosomes which is same for every other cell of that
individual. A chromosome consists of genes, which are blocks
of DNA. During reproduction, the fittest individuals are
selected by the process of natural selection. These individuals
undergo the method of recombination (or crossover). In this
step portions of the healthy chromosomes are randomly
exchanged in the hope of achieving healthier individuals.
After crossover, the process of mutation takes place. In
mutation parts of a chromosome is changed randomly. This is
done because during crossover there is a slight chance that a
healthy portion from an individual may get destroyed due to
recombination.

Genetic algorithms result in better offspring and much
evolved species. This characteristic of GA can be used to
optimize problems in other domains as well. Genetic
Algorithms belong to the group of evolutionary algorithms
which are probabilistic in nature. In this paper we use genetic
algorithm to determine locations, in texts, where a certain
pattern can be found. The challenge lies in modeling the real
life problem into strings which can be processed by a
computer. Table 2, depicts the notations that will be used in
subsequent discussions.

TABLE 2
IMPORTANT NOTATIONS-2

Abbreviation Description

N Population size, the number of
chromosomes

look_up Hashed table

GA Genetic algorithm

A Area to be scanned

Initially a certain number of strings are considered. These

strings are analogous to chromosomes. They form the first
generation. A fitness function is designed which accepts a
chromosome as an input and returns the fitness value of that
chromosome, which is indicative of the health of the
chromosome. Then depending on the fitness of the
chromosomes a Roulette wheel is designed. On that wheel
chromosomes having higher fitness occupy larger area than
chromosomes which have lesser fitness. The Roulette wheel is
rotated N times where N is the population size. Each time a
preset pointer chooses a chromosome. Therefore after each
rotation a very healthy individual is chosen. After selection
the process of crossing over takes place. In this step parts of a
randomly selected pair of chromosomes are exchanged in the
expectation of yielding better individuals. Then in the next
step some randomly selected locations of randomly selected
chromosomes are mutated with the expectation of reviving
healthy portions of chromosomes which might have been lost
due to crossover. After these processes we get N chromosomes
again. These chromosomes form the new generation. The
genetic operators can be again applied to this generation in
order to get an ever healthier generation.

Genetic algorithms have several advantages over normal
optimization procedures.

 Genetic Algorithms do not work with derivatives.
Therefore there is no problem if the derivative of the
fitness function does not exist at any point.

 Many optimization problems, like Hill Climbing,
suffer from the problem of local maxima. If the
algorithm starts at a poor location it may stop after
reaching a local maximum and not continue to search
for the global maxima. In case of GA there is hardly
any chance of getting stuck at local optima. Since
there are a population of points (chromosomes),
instead of a single point, GAs climb many peaks in

International Journal of Scientific & Engineering Research Volume 3, Issue 11, November-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

parallel, that is, they are multimodal. Thus the
probability of finding a false peak is reduced.

 In many cases GAs give multiple solutions instead of
just one.

The disadvantage of GA is that, like most Artificial
intelligence problems, it cannot guarantee a constant response
time. Moreover there is no absolute assurance that a GA will
find a global optimum.

4 PATTERN MATCHING COMBINED WITH GENETIC

ALGORITHM

Genetic Algorithms can be useful in breaking the text into
several smaller segments, which are independent, and then
apply KMP or BM over the smaller sized segments. The
pattern can be anywhere within the text. But successful
determination of the location of the pattern is impossible
without complete examination of the text. Hence, to some
extent, the problem of finding a pattern in a text can be called
non-deterministic. Therefore we use GA, which is a tool for
handling non-determinism. The GA is used to locate portions
in the text where the pattern may be found. Once a match is
found the algorithm terminates with success returning the
position of the text where the pattern was found. This
mechanism eliminates the necessity to search the entire text to
locate the pattern. If the pattern is present at the extreme end
of the text then both KMP and BM has to search the entire text.
But if GA is used to break up the text then only a very small
portion needs to be searched. For the searching we have used
conventional KMP and BM. We have used three genetic
operators in our algorithm, namely selection, crossover and
mutation. For illustrations we have used the following text
and pattern.

Text

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h a v e a n i c e d a y
Fig. 1: Text

Pattern

1 2 3 4

n i c e
Fig. 2: Pattern

4.1 Chromosomes

A chromosome is an organized structure of DNA and protein
found in cells. DNA is made up of several genes. Genes are the
bearers of traits. Therefore chromosomes are indicative of the
characteristics of the population. In order to apply GA the set
of inputs should be coded. We have considered the binary
representation of positions in the text as the set of
chromosomes. For example the position 10 is encoded as
000
000001010. We have used 64 bits to represent each
chromosome. For future references to chromosomes we have
used four bit representation instead of 64 bit representation.

The initial population of chromosomes is created by
randomly selecting positions. It is ensured that the position of
the chromosomes never cross the length of the text.

4.2 Population Size

It is the total number of chromosomes in a generation. The
population size must be even1. Let us consider a population
size of four for illustration purpose. Let the chromosomes
created in the first generation be 3, 7, 12 and 14. Their
representation, as a string, will be 0011, 0111, 1100 and 1110.

4.3 Fitness Function

Fitness function is a function that is used to determine the
health of a chromosome. It is a real valued function that takes
the chromosome as input and returns a real value which
indicates the fitness of the chromosome.

We have considered a look up table for which the data
structure we used is a two dimensional array of size 256×256,
where all the positions are initialized to zero. The pattern is
preprocessed and pairs of consecutive elements from the
pattern are chosen. The ASCII values of the consecutive
elements form indexes to the look up table. Then that position
in the look up table is set to one.

For example, for the pattern ―nice‖, we have four
characters n, i, c and e in pattern with ASCII values 110, 105,
99 and 101 respectively.

Then positions look_up[110][105], look_up[105][99] and
look_up[99][101] are all set to one. Here, for each position in
the look up table, the values of the indices are ASCII values of
the characters in the pair.

In our algorithm the fitness function accepts a
chromosome, which is indicative of a position in the text. Let
us call this position a 'cut'. It selects m-1 elements to the left
and m elements to the right of the cut. Let us denote this area
of the text by A. Therefore the length of the area A is equal to
twice the length (m) of the pattern. It is ensured that the
extreme left of area A is minimum zero and the extreme right
of area A is maximum n, i.e. Area A lies within the text. The
scanning begins from the leftmost index A and continues to
the rightmost index of A. It selects a pair of characters and
compares them to their corresponding location, which is
formed out of the ASCII values of the characters, in the
look_up table. If the position in the look_up table is zero then
a heuristic value, which was previously set to zero, is
incremented once. On the other hand if the position in the
look_up table is one then the heuristic value in incremented by
two. We increment the heuristic by one even if there is a
mismatch to maintain diversity in the population. Finally after
the entire area 'A' has been scanned, the heuristic value is
returned as the fitness value of the chromosome.

It is evident from the fitness function that a chromosome
which exists near the pattern, or across the pattern, will have
very high fitness value. This will ensure its selection during
the process of application of the genetic operator selection.
The fitness function can be mathematically represented as

1This is required for crossover

International Journal of Scientific & Engineering Research Volume 3, Issue 11, November-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Where,

 ()

{

 ∑ ()

 () ()

∑ ()
 () ()

∑ ()
 () ()

∑ ()
 () ()

 (1)

And

 () {
 [[[[

 [[[[
 ()

Therefore, we can see that F is a discrete function, which is in
its domain but not differentiable. Hence the scope of
application of conventional optimization techniques is
restricted due to the non-differentiability of the fitness
function.
For example the fitness value of the chromosomes can be
calculated as under.

F(3)=val(1)+val(2)+val(3)+val(4)+val(5)+val(6)
 =1+1+1+1+1+1=6
F(7)=val(4)+val(5)+val(6)+val(7)+val(8)+val(9)+val(10)+val(11)
+val(12) = 1+1+1+1+2+2+2+1+1=14
F(12)=val(9)+val(10)+ val(11)+ val(12)+ val(13)+ val(14)
 =2+2+1+1+1+1=8
F(14)= val(11)+ val(12)+ val(13)+ val(14)
 =1+1+1+1=4

4.4 Genetic Operators

An operator, which is used in genetic algorithms, to combine
existing solution into others and maintain genetic diversity is
called a genetic operator. These may be either unary or binary.

4.4.1 Selection

This operator makes use of the fitness function to decide how
healthy a chromosome is. It gives preference to better
individuals, allowing them to pass on their genes to the next
generation. We have used Roulette wheel selection method
here. This method, at first, randomly selects a number
between 0 and the total fitness of the current population. After
this, the algorithm chooses a chromosome at each iteration,
and keeps adding its fitness value. Whenever the cumulative
fitness value crosses the random number chosen, that
chromosome is selected for further operation. Though this
process is randomized, it depends on the fitness of each
chromosome. Hence only very healthy chromosomes are
chosen for crossover.

For example, for the set of four chromosomes having
fitness values as 6, 14, 8 and 4 the Roulette wheel will be

Fig. 3: Roulette wheel

4.4.2 Crossover

This is a binary genetic operator. It operates on two
chromosomes. A pair of chromosomes C1 and C2 is chosen
randomly from the population, so the size of the population
needs to be even. We follow scattered crossover method here.
We select a random number R. Firstly, we XOR R with
C1.Then we XOR the NOT of R, say Ŕ, with C2.After this we
OR these values together to get C3.Again we XOR R with C2
and XOR Ŕ with C1.Then we OR these values together to get
C4.Thus, C3 = (C1^R)|(C2^Ŕ) and C4=(C2^R)|(C1^Ŕ). If C3
and C4 are less than the length of the text then these new
chromosomes are passed for further operations.
If both the resulting chromosomes are within the bounds of
the text then they are passed for the next genetic operation.
Otherwise the chromosomes are reset to their previous values.
We present an example here with a smaller length
chromosome,
If the chromosomes are
C1=0011
C2=1100
And the random number is
R=1001
Then the NOT of this random number is
Ŕ=0110
C3= (0011^1001)|(1100^0110)=1010
C4= (1100^1001)|(0011^0110)=0101

4.4.3 Mutation

Mutation is a unary genetic operator. It operates on one
chromosome. A chromosome is chosen randomly and a
random bit position of that chromosome is toggled. If the
mutated chromosome value is less than length of the text then
it is passed on to the next generation.
For example, if the chromosome is C1=1110, and the randomly
chosen mutation point is 4, then the resulting chromosome
will be C2=0110.

4.5 Generation

A generation consists of N chromosomes. Only for the first
generation, the chromosomes are chosen randomly. For all
other generations the chromosomes are generated by applying
the genetic operators. If the fitness of the current generation is
better than the previous generation then the previous
generation is replaced by the current generation.

4.6 Pattern Matching

After the completion of the phase of genetic algorithm, we
arrive at chromosomes which are nothing but cut points. We
sort the population with respect to their cut points and also of
their fitness value. For the two cases we use two different lists.
If we find that all the fitness values are same then, we choose
the first chromosome and the last chromosome and search for
the pattern there. Same fitness value for the entire population
suggests that the probability of finding the pattern is same
around all the cut points. Since the cut points are haphazardly
placed in the text, we search the first and last portions of the

International Journal of Scientific & Engineering Research Volume 3, Issue 11, November-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

text initially, as they have not been probed before. If the fitness
values are different, we choose chromosomes depending on
their fitness value. Depending on the chromosome chosen, a
portion of text is selected which starts from the previous
chromosome and extends up to the next chromosome in the
list. The pattern is searched for in this portion. During this
process we mark the portions of the text already searched.
This will later prevent any redundant check on the text. For
pattern matching we use the conventional algorithms KMP
and BM. For example after application of the genetic operators
the chromosomes generated are 2, 3, 9 and 14. From the fitness
value chromosome with position nine gets chosen.

Previous chromosome cut Next chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h a v e a n i c e d a y

Fig. 4: Effective text area searched

The shaded area, which spans from the previous chromosome
to the next chromosome, is searched for the pattern. Next
section illustrates the algorithm.

4.7 Algorithm

The patternMatcher algorithm computes the look_up table. It
also applies genetic algorithm to generate the finest
individuals. Then it calls other functions to match portions of
the text with the pattern.

patternMatcher(Text, Pattern)// finds the existence of Pattern in the
Text.

Set population size and number of generations.
Preprocess the pattern and generate the look_up table.
Create the initial population of chromosomes by randomly
selecting positions from the text.
foreach (chromosome ∈ chromosomes)

 fitness = findFitness(chromosome)
repeat

 selectChromosomes()
 crossover()
 performMutation()
 chooseGeneration()
 generations ← generations – 1

until (generations = 0)
arrange chromosomes according to their fitness
match()
display result

The findFitness algorithm examines a portion of the text

around the cut. It uses the look_up table to match pairs of
characters from this portion. Depending on a match or a
mismatch it updates a particular value. After the entire
portion is probed the final value of the heuristic is returned.

findFitness(pos) // m is the length of the pattern, n is the length

of the text

l←pos – m +1
if l<0 then

l←1
r←pos+ m
if r> n then

r← n
i←l, j←i+ 1, val←0
while j ≠ r

if lookup_up[Text[i]][Text[j]] = zero then
 val←val+1
else
 val←val+2
i←i + 1
 j←j+1

return val

The selectChromosomes algorithm uses roulette wheel

method to select the best chromosomes. It uses random
numbers to decide which chromosome to select. At every step
it adds the fitness of each chromosome with a variable. When
the value of that variable crosses the value the chosen random
number, the chromosome is selected.

selectChromosomes()
 repeat
 Select a random number R between 0 and the total fitness of
the generation
 i←1, fitnessSoFar←0
 while i ≤ N
 fitnessSoFar←fitnessSoFar + fitness value of ith
chromosome
 if fitnessSoFar>R then
 select chromosome i
until (population size is N)

The crossover algorithm simulates the process of crossing over.
A pair of chromosomes, at a time, is considered for this
operation. Depending on the value of a variable, which is
chosen randomly, portions of the first chromosome and
portions from the other chromosome is combined to form new
chromosomes.

crossover()

repeat
Randomly select two chromosomes for crossover

C1 and C2
choose a random number R
Ŕ ← NOT of R
C3←(C1^R)|(C2^Ŕ)
C4←(C2^R)|(C1^Ŕ)
If C3 < n AND C4 < n then
C1←C3
C2←C4

until (N chromosomes have been processed)

The mutation algorithm chooses a certain number of bits,
determined by mutation probability. Then for randomly
selected chromosomes it toggles a random bit.

International Journal of Scientific & Engineering Research Volume 3, Issue 11, November-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

mutation()

k← number of bits to be mutated.
repeat

Select a chromosome randomly.
Select a bit position randomly.
Toggle the value of that bit.
if the mutated chromosome <n then

pass it on to the next generation.
 k←k - 1
 until (k = 0)

The chooseGeneration algorithm finds out if the fitness of the

newly formed generation is better than the previous one. If it
is so then the new generation becomes the current generation
and computation continues with the new generation.

chooseGeneration()

Compute the fitness of the newly created generation.
h← highest value of fitness in the new generation.
if (h> the highest value of fitness in the previous

generation) then
 newgeneration←current generation

The match algorithm determines from the portion of the
text to be searched for the existence of the pattern. For this it
takes help of the fitness values of the chromosomes in the
newest generation.

match() // chromosomes are sorted based on fitness

if (the fitness values of the chromosome in the final generation
are all same) then

Choose the first chromosome.
l← 1
r← value of the next chromosome in the sorted list
search for Pattern in Text[l … r] using KMP or BM
Choose the last chromosome.
l← value of previous chromosome in the sorted list-

(length_pattern+1)
// ensure that the pattern is found even if it exists across a

cut
r ← length of text.
search for Pattern in Text[l … r] using KMP or BM

repeat
Choose a chromosome randomly and mark it.
l ← value of previous chromosome in the sorted list-

(length_pattern+1)

r← value of next chromosome in the sorted list.
search for Pattern in Text[l … r] using KMP or BM

until all the chromosomes have been processed
else

repeat
C1 ← the chromosome with the highest fitness
l ← value of previous chromosome of C1 in the

sorted list-(length_pattern+1)
r← value of next chromosome of C1 in the sorted

list.
if the positions are marked then

Skip this portion to ensure that no portion of the
text is searched more than once.
else

search for Pattern in Text[l … r] using KMP or
BM

until all the chromosomes have been processed

4.8 Complexity

TABLE 3
IMPORTANT NOTATIONS-3

Abbreviation Description

N Population size

G Generations

m Length of pattern

n Length of text

pm Probability of mutation

l Left index of the portion of array chosen

r Right index of the portion of array chosen

The functions and their asymptotic complexities are given
below:
selectChromosomes: O(N2G)
findFitness: O(2mG) = O(mG)
crossover: O(GN/2) = O(NG)
mutation: O(64*pm*NG)=O(NG)
chooseGeneration: O(NmG)
match (for KMP): O(r-l+m)
match (for BM): O((r-l)/m)

5 EXPERIMENTS

We have executed our algorithm, with different sets of text
and pattern files, and compared its time with that of the
conventional KMP and BM algorithms. We have tested with
texts of size 500MB, 600MB, 750MB, 900MB and 1000MB. The
pattern files are of size 500B, 750B and 1000B.

We chose population size as 500 and 1000 and generations
as three and five. For a particular text file and a pattern file we
chose a specific population size and generation. Then we
executed the tests 100 times and computed the average.
We have conducted our experiments in the following
environment.

 Hardware
 Processor - Intel® Core™2 Duo CPU T6500 @

2.10GHz × 2
 RAM - 3 GB
 Disk - 320 GB

 Software
 Operating system – Open SUSE Kernel version

3.1.0-1.2-desktop
 OS type – 64-bit
 Compiler used – GCC version 4.6.2 (SUSE Linux)

6 OBSERVATIONS

The results of our experiments are depicted in the graphs
below. In the first two graphs we have represented the

International Journal of Scientific & Engineering Research Volume 3, Issue 11, November-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

performance of the algorithms with changing pattern size,
with a fixed text file size of 1GB. In the next two graphs we
have represented the performance of the algorithms with
change in text size. We have conducted our experiment with 5
different text sizes of 500MB, 600MB, 750MB, 900MB and 1GB.
We have used a fixed 1000 bytes file as a pattern for our
experiment. The four lines in each of the graphs are for four
different algorithms we used for the text and the pattern. The
algorithms are conventional KMP, conventional BM, KMP
PMGA (KMP with genetic algorithm) and BM PMGA (BM
with genetic algorithm). We have used the following
notations:

Fig. 5: Reference for graphs

Fig. 6: Average time taken with respect to change in pattern size, N=500
and G=5

Fig. 7: Average time taken with respect to change in pattern size, N=1000
and G=3

Fig. 8: Average time taken with respect to change in text size,N=500 and
G=5

Fig. 9: Average time taken with respect to change in text size,
N=1000 and G=3

7 CONCLUSION

From the graphs we can find that KMP when used with
genetic algorithm gives much better result than when
conventional KMP is applied. This is also true for BM. The
most significant advantage of this algorithm is that if the
pattern is present, then our algorithm does not need to search
the entire text. The search is concentrated on an area where the
probability of successfully locating the pattern is highest.

The algorithm is designed in such a way that even if a
pattern lies across a cut its detection will be possible, because
we are searching from the previous cut to the next cut.

If, however, the pattern is not present in the text, then our
algorithm will take more time to give a correct result. This is
due to the fact that the entire text has to be searched in order
to conclude that the pattern does not exist. But before
conducting the search, the GA has to be applied which will
take some additional time. Also our algorithm is probabilistic
so it will depend on how well pseudo-random number
generators work.

International Journal of Scientific & Engineering Research Volume 3, Issue 11, November-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

REFERENCES

[1] Baeza-Yates. R. A. String Searching Algorithms Revisited. Lecture
Notes in Computer Science, 382:75–96, 1989

[2] Boyer R. and Moore J.S. A Fast String Searching Algorithm. Comm. of
the ACM, 20:762–772, 1977.

[3] Colussi. L. Fastest Pattern Matching in Strings. Journal of Algorithms,
16:163–189, March 1994.

[4] Goldberg, D.E. (2011): Genetic Algorithms in Search, Optimization
and Machine Learning, Pearson.

[5] Knuth D., Morris J. and Pratt V. Fast Pattern Matching in Strings,
SIAM Journal of Computer Science, pp323 – 350, 1977.

[6] Lander E.S., Langridge R., and Saccocio D.M. Mapping and
Interpreting Biological Information. Communications of the ACM,
34(11):33 – 39, November 1991.

[7] Mount David W., Bioinformatics – Sequence and Genome Analysis,
Cold Spring Harbor Laboratory Press, 2001.

[8] Navarro G. and M. Raffinot. Fast and Simple Character Classes and
Bounded Gaps Pattern Matching, With Application to Protein
Searching. In Annual Conference on Research in Computational
Molecular Biology, Montreal, Canada, 2001.

[9] Rajesh S., Prathima S., Reddy L.S.S., Unusual Pattern Detection in
DNA Database Using KMP Algorithm, International Journal of
Computer Applications (0975 - 8887)Volume 1 – No. 22, 2010

[10] Simone Faro and Thierry Lecroq. An Efficient Matching Algorithm
for Encoded DNA Sequences and Binary Strings. Lecture Notes in
Computer Science, 2009, Volume 5577/2009, 106-115

[11] Smith-Keary. P. Molecular Genetics. Macmillan Education Ltd,
London, 1991.

http://www.springerlink.com/content/?Author=Simone+Faro
http://www.springerlink.com/content/?Author=Thierry+Lecroq
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/

